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LOCALIZED BENDING VIBRATIONS
OF PIEZOCERAMIC TRANSVERSE POLARIZED PLATE
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Problem of the piezoceramic plate polarized along the normal of the middle
plane of the plate is solved, based on the assumptions of the hypothesis of
Kirchhoff, taking into account the components characterizing the electric field.
The equations of planar and bending vibrations are obtained. Localized bending
vibrations are considered, and the effect of the electric field on the frequency of
localized vibrations is investigated.

MSC2010: 74H45.

Keywords: Kirchhoff’s hypothesis, natural frequencies, piezocrystal.

Introduction. The problems of vibrations of piezoceramic plates were
studied in [1–6]. In [2, 3] bending vibrations of piezoceramic plate were studied,
based on the assumptions of Kirchhoff’s hypothesis. In [4] the problem of bending
vibrations of piezoceramic plate of class 6 mm was investigated polarized along the
normal of the middle plane of the plate. The components of plate displacement are
presented, taking into account the assumptions of refined theory and with allowance
for the components characterizing the electric field.

In [5] the piezoceramic plate was considered, where the components of
displacement are presented based on the theory of S. Ambartsumian.

In present paper localized bending vibrations of piezoceramic plate are
considered, on the basis of Kirchhoff’s hypothesis, taking into account additional
components characterizing the electric field.

Problem Setting. Consider piezoceramic plate of constant thickness 2 h and
polarized along the normal of the middle plane of the plate. The plate is located in
the Cartesian coordinate system, so, that its middle plane coincides with the plane
XOY and the plate occupies the region 0≤ x≤ a, 0≤ x≤ ∞, −h≤ z≤ h.
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The equations of state of an elastic body are written in the form [1]:

ε11 =
(σ11−υσ22)

E
− υ ′

E ′
σ33 +d31E3, ε22 =

(σ22−υσ11)

E
− υ ′

E ′
σ33 +d31E3,

ε33 =−
υ ′

E ′
(σ11 +σ22)+

1
E

σ33 +d33E3, ε12 =
2(1+υ)

E
σ12,

ε13 =
1
G′

σ13 +d15E1, ε23 =
1
G′

σ23 +d15E2,

(1)

D1 =∈11 E1 +d15σ13, D2 =∈11 E2 +d15σ23,
D3 =∈33 E3 +d13(σ11 +σ22)+d33σ33,

(2)

where ∈11,∈33 are permittivity coefficients at zero mechanical stresses; di j are piezo-
electric constants; εi j are components of deformation; σi j are components of stress
tensor; Ei are components of vector of electric intensity; Di are components of vec-
tor of electric displacement field; E,E ′ are Young’s modulus; G′ are shear modulus;
υ ,υ ′ are Poisson’s coefficients.

According to the assumption of Kirchhoff’s hypothesis from (1) and (2) and
neglecting σ13,σ23,σ33 the equations of state are written as:

σ11 =
E

1−υ2 (ε11 +υε22)−
E

1−υ
d31E3,

σ22 =
E

1−υ2 (ε22 +υε11)−
E

1−υ
d31E3, σ12 =

E
2(1+υ)

ε12,
(3)

D1 =∈11 E1, D2 =∈11 E2, D3 =∈33 E3 +d13(σ11 +σ22). (4)

Equations of electrodynamics for piezomedium have the following view in the
electrostatic approach:

div ~D = 0, rot ~E = 0 (~E =−grad ϕ). (5)

For displacement component, at any point of the plate, according to the
assumptions of Kirchhoff’s hypothesis, we have:

u1 = u− z
∂w
∂x

+d15

∫ z

0
E1dξ , u2 = v− z

∂w
∂x

+d15

∫ z

0
E2dξ , u3 = w, (6)

here u, v, w are displacement of the middle plane of the plate.
For the problem of bending vibration of piezoceramic plate, displacements of

the middle plane of the plate are obtained, according to the Kirchhoff’s hypothesis
assumption, where the integrals members are not taken into account [2, 3].

In [5] displacement components are considered taking into account the refined
theory of S. Ambartsumian, and in special case displacements of the middle plane
of the plate are obtained according to the Kirchhoff’s assumption, where the compo-
nents are not taken into account characterizing electric field.

Stress components and components of the electric induction vector, taking into
account (6), are written by the following way:
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(8)

Motion equation of piezoceramic body:

∂σi j

∂x j
= ρ

∂ 2ui

∂ t2 . (9)

Internal forces Ti =
∫ h

−h
σiidz, i = 1,2, and moments relative to the median plane are:
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where the following notes are accepted:
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(∫ h

0
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Integrating the motion equations (9) on z by the limits from −h to h, we will get:

∂T1

∂x
+

∂S
∂y

+σ13

∣∣∣h
−h

= 2ρh
∂ 2u
∂ t2 ,

∂S
∂x
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∂T2
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+
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(13)

After multiplying the first two motion equations (9) by z and integrating by the limits
−h to h, we obtain:

∂M1

∂x
+

∂H
∂y

= N1,
∂H
∂x

+
∂M2

∂y
= N2. (14)

Substituting the internal forces values and the moments in the first two equations
(13), (14), we have:
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(
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)
+
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The system (15) represents the equations of planar vibrations of a piezoceramic
plate. Substituting the last equation from (13) in (16), we obtain the equation of
bending vibrations:

D∆
2w+2ρh

∂ 2w
∂ t2 −

Ehd13

1−υ
∆

(
ϕ
∣∣h
−h−

1
h

∫ h

−h
ϕdz

)
+

Ed15

1−υ2 ∆
2(I2+m2)−σ33

∣∣h
−h = 0, (17)

where D =
2h3E

3(1−υ2)
.

Averaging the equation of electrodynamics, the following relations are
obtained:

−
(
∈11 +

d13d15E
1−υ

)
∆ϕ−

(
∈33 +

d2
132E

1−υ

)
∂ 2ϕ

∂ z2 −
d13E
1−υ

∆w = 0. (18)

Let’s consider the equation of bending vibrations. On the surface faces of the
plate z =±h has the following condition:

σ13 = 0, σ23 = 0, σ33 = 0, σ = 0. (19)
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Then the equations of bending vibrations and for the potential will be written:

D∆2w+2ρh
∂ 2w
∂ t2 +

Ehd13

1−υ
∆

(
1
h

∫ h

−h
ϕdz

)
+

Ed15

1−υ2 ∆2(I2 +m2) = 0,

∆ϕ +a1
∂ 2ϕ

∂ z2 =−a2∆w,
(20)

where the following notes are accepted:

a1 =
∈33 (1−υ)+d2

13E
∈11 (1−υ)+d13d15E

, a2 =
d13E

∈11 (1−υ)+d13d15E
.

In this case the equations of bending vibrations are separated from the equations of
planar vibrations.

Suppose that the following boundary conditions are given at the edges of the
plate and in the limit y→ ∞ :

at x = 0 w = 0, M1 = 0, ϕ = 0; at x = a w = 0, M1 = 0, ϕ = 0;

at y = 0 M2 = 0,
∂M2

∂y
+2

∂H
∂y

= 0, ϕ = 0; at y→ ∞ w = 0, ϕ = 0.
(21)

The solution of the Eqs. (20) of the system we will seek in the form

w(x,y, t) = w0(y)sinαnxexp(iωt), ϕ(x,y,z, t) = Φ(y,z)sinαnxexp(iωt), (22)

where αn = πn/a.
Substituting the seeking solutions in differential equations for ϕ potential,

we will get (
∂ 2Φ

∂y2 −α
2
n Φ

)
+a1

∂ 2Φ

∂ z2 =−a2(w′′0−α
2
n w0). (23)

Let’s seek (23) differential equation Φ(y,z) = ϕ0(y,z) + R(y). The seeking solution
inserting in (23), for Φ(y,z) we will get

Φ(y,z) = (A1 exp(by)+A2 exp(−by))(B1 sin(βmz)+B2 cos(βmz))+
+C1(y)exp(αny)+C2(y)exp(−αny), (24)

where C1(y) =−
a2

2αn
(w′0 +αnw0)+C10; C2(y) =−

a2

2αn
(w′0 +αnw0)+C20; βm =

2πm
h

;

b2 = α2
n +λ 2a1.
Satisfying boundary conditions on the border of z = ±h, for ϕ potential

we will get

ϕ(x,y,z) =)(C1(y)exp(αny)+C2(y)exp(−αny))(1− cos(βmz)sinαnxexp(iωt)). (25)

Substituting the seeking solution in the equation of bending vibration, we will get

w′′0−2α
2
n

(
1+

γ

1−χ

)
w′′0 +α

4
n

(
1− Ω2−2γ

1−χ

)
= 0, (26)

where

γ =
3d13a2(1+υ)

2h2α2
n

, χ = d15a2

(
1+

3
h2β 2

)
, Ω

2 =
2ρhω2

α4
n D

. (27)

The solution of (26) differential equation will have following view
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w0(y) = Aexp(αn p1y)+Bexp(−αn p1y)+C exp(αn p2y)+Dexp(−αn p2y), (28)

where θ1,2 =±
√

1−ζ +
√

ζ 2 + Ω̂2, θ3,4 =±
√

1−ζ −
√

ζ 2 + Ω̂2, ζ =
γ

1−χ
, Ω̂2 =

Ω2

1−χ
.

According to the condition, from (21) we will get

w0(y) = Bexp(−αn p1y)+Dexp(−αn p2y). (29)

According to the damping condition, when y→ ∞, w = 0, ϕ = 0, the seeking
constants C10, A, D are equal to zero. Then satisfying boundary conditions on y= 0 we
will get system of mathematical equations towards the seeking unknown constants.

In order the system of algebraic equations has non-zero solution, it is neces-
sary that its determinant was equal to zero. From the condition that the determinant
is equal to zero, we will get dispersion equation which depends on the frequency
vibration

K(Ω̂)≡ θ 2
1 θ 2

3 +2(1−υ)θ1θ3−υ(υ−2ζ )− r(θ1θ3 +θ1 +θ3 +υ) = 0,

r = 2ζ − (1−υ)χ

1−χ
.

(30)

According to the damping condition from (30) follows that θ1 > 0, θ3 > 0, it
follows from here 0 < Ω̂2 < 1− 2ζ . In limited cases the following inequalities must
be satisfied. In the case when Ω̂2 = 0, K(0)> 0, we will get θ1 = 0, θ3 =

√
1−2ζ ,

1−2ζ +2(1−υ)
√

1−2ζ −υ(υ−2ζ )− r
(√

1−2ζ +1+υ

)
> 0. (31)

In the case when Ω̂2 = 0, K(1−2ζ )< 0, we will get θ1 =
√

2(1−ζ ), θ3 = 0.

−υ(υ−2ζ )− r
(√

2(1−ζ )+υ

)
< 0. (32)

In the case, when piezoeffect is missing, (31) and (32) inequalities are satisfied,
we will get known result [7]. For piezoceramic plate 2 h with constant thickness and
polarized along the normal of the middle plane of the plate, numerical analysis are
done for defining the frequency of localized vibrations. The meaning of the frequency
of localized vibrations dependant on dimensionless values γ and χ at υ = 0,3 are
presented in the Table.

Frequencies of localized vibrations

γ χ K(0) K(1−2ξ ) Ω

0.10 0.15 1.62 –0.20 0.79

0.15 0.10 1.07 –0.39 0.72

0.20 0.25 0.69 –0.38 0.52

0.25 0.30 0.19 –0.56 0.55

In the case when piezoeffect is missing, the meaning of the frequency of
localized vibrations is Ω = 0.99. From the Table follows, that for piezoceramic plate
2 h with constant thickness and polarized along the normal of the middle plane of the
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plate exist frequency of localized vibrations and with the increase non dimensional
values y, χ, the size of frequency of localized vibrations decreases.
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From Figure is seen, that frequency of localized vibrations decreases with the
increasing of geometric parameters of plate.

Conclusion. For piezoceramic plate polarized along the normal of the mid-
dle plane of the plate, the equations of planar and bending vibrations are obtained.
In frequent case bending vibrations are considered, for which dispersion equation
is obtained for determining frequency of localized vibrations. It is shown that for
bending vibrations of piezoceramic plate polarized along the normal of the middle
plane of the plate the frequency of localized vibrations decreases at the increasing of
dimensionless values y, χ .
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